8 de septiembre de 2009
Para los vectores A y B de la siguiente figura. Use el método de componentes para obtener la magnitud y dirección de:
A) A + B
B) La suma vectorial B + A
C) La diferencia vectorial A – B
D) La diferencia vectorial B – A
A = -12і
B = (18 sen 37 і + 18 sen 37 ј)
B = 13.77 і – 11.58 ј
A)
A + B = (-12) і + (13.77і – 11.58ј) = 1.77і – 11.58ј
A + B = √[(1.77)² + (-11.58)²] = √(137.2293)
A + B = 11.714
Θ = arctan (-11.58/1.77) = 81.30°
B)
B + A = 1.77і – 11.58ј
B + A = 11.714
Θ = 81.30°
C)
A – B = (-12і) – (13.77і – 11.58ј) = -25.77і + 11.58ј
A – B = √[(-25.77)² + (11.58)²] = √(798.18)
A – B = 28.25
Θ = arctan (11.58/-25.77) = 24.19°
D)
B – A = (13.77і – 11.58ј) – (-12і) = 25.77і – 11.58ј
B – A = 28.58
Θ = 24.19°

A) A + B
B) La suma vectorial B + A
C) La diferencia vectorial A – B
D) La diferencia vectorial B – A
A = -12і
B = (18 sen 37 і + 18 sen 37 ј)
B = 13.77 і – 11.58 ј
A)
A + B = (-12) і + (13.77і – 11.58ј) = 1.77і – 11.58ј
A + B = 11.714
Θ = arctan (-11.58/1.77) = 81.30°
B)
B + A = 1.77і – 11.58ј
B + A = 11.714
Θ = 81.30°
C)
A – B = (-12і) – (13.77і – 11.58ј) = -25.77і + 11.58ј
A – B = √[(-25.77)² + (11.58)²] = √(798.18)
A – B = 28.25
Θ = arctan (11.58/-25.77) = 24.19°
D)
B – A = (13.77і – 11.58ј) – (-12і) = 25.77і – 11.58ј
B – A = 28.58
Θ = 24.19°
No hay comentarios:
Publicar un comentario